

Team Number: 44
Dr. Berk Gulmezoglu

Benjamin Muslic
Jonathan Duron

Mohamed Elaagip
William Griner

Thecarcloudproject@gmail.com
https://sdmay25-44.sd.ece.iastate.edu/

mailto:Thecarcloudproject@gmail.com

Modern vehicles generate Diagnostic Trouble Codes (DTCs) when issues arise, but
interpreting these codes remains a significant challenge for most drivers. This
knowledge gap often leads to unnecessary expenses and uncertainty about vehicle
repairs. FixIt addresses this problem by developing an intelligent mobile
application that translates complex DTCs into easily understandable information.
Key design requirements include:

• OBD-ll reader compatibility with all compliant vehicles

• ESP32 communication via Bluetooth for sending data

• AI-based code interpretation from community forums

• Real-time diagnostics

• User friendly interface

• Cost-effective solution
This design uses multiple technologies and approaches:

• ESP32 microcontroller for OBD-ll communication

• React Native for cross platform mobile development

• Bluetooth Low Energy (BLE) for communicating to devices

• Cloud services for data processing (pending implementation)
Our teams current progress:

• Successfully established ESP32 communication with OBD-ll scanner

• Developed and tested prototype mobile application

• Implemented Bluetooth communication between ESP32 and mobile app

• Created user interface for DTC’s display and interpretation

Pending features and next steps:

• Implementation of user authentication system

• Web scraping functionality for gathering repair information

• User testing and feedback collection

• Interface refinement based on user experience

Executive Summary

FixIt

DESIGN DOCUMENT

• Personal vehicle profile creation

While the core functionality meets basic requirements, several key features remain
in development. The project's success will be measured through user testing and
feedback, focusing on ease of use and how each of the codes are interpreted. The
team maintains a structured timeline to ensure completion of remaining features.
This solution promises to empower drivers with the knowledge needed to make
better decisions about their vehicle maintenance and repairs, potentially saving
both time and money while providing peace of mind. (262 words almost there)

Learning Summary

Development Standards & Practices Used

Hardware Standards

• OBD-II Protocol Standards (SAE J1979)

• ISO 15765-4 (CAN) communication protocol

• ISO 9141-2 protocol support

• Bluetooth Low Energy (BLE) specifications

Software Development Standards

• React Native development guidelines

• TypeScript coding standards

• Git version control practices

• ESP32 programming standards

• Mobile app UI/UX design principles

Testing Equipment

• ECUsim 2000 emulator for OBD-II simulation

• Standard protocol presets for testing:

• ISO protocols (9141-2, 14230-4, 15765-4)

• Protocol verification through monitoring (SOMM)

• Fault simulation capabilities (SF)

Engineering Standards

• CAN bus communication standards

• ESP32 hardware specifications

• Bluetooth 5.0 specifications

• OBD-II pin configuration standards

• USB communication protocols

Summary of Requirements

Functional Requirements

• OBD-II reader compatibility with all compliant vehicles

• ESP32 communication via Bluetooth for data transmission

• Real-time diagnostics and monitoring

• Vehicle health monitoring capabilities

Physical Requirements

• Hardware portability (OBD-II reader and ESP32)

• Wi-Fi and cloud integration

• ECUsim 2000 for development and testing

Technical Requirements

• Support for multiple OBD protocols:
• ISO 15765-4 (CAN)
• ISO 9141-2
• ISO 14230-4
• SAE J1850 PWM/VPW

User Interface Requirements

• Clean, modern, and intuitive layout
• Easy-to-understand icons
• Clear navigation structure
• Real-time data display capabilities

User Experience Requirements

• Easy device setup and pairing
• Fast data processing and display
• Seamless cloud integration
• Secure data transmission
• Clear error code interpretation

Economic Requirements

• Total hardware cost under $100
• Cost-effective solution for DIY users

Applicable Courses from Iowa State University Curriculum

Software Development
COM S 319: Software Construction and User Interfaces

• React Native mobile application development
• User interface design for diagnostic display
• Component-based architecture implementation

COM S 309: Software Development Practices
• Version control and collaborative development
• API integration for diagnostic data

• Software testing methodologies
Hardware and Protocols
CPR E 288: Embedded Systems

• ESP32 microcontroller programming
• Protocol implementation (ISO 15765-4, ISO 9141-2)
• Hardware-software integration

CPR E 489: Computer Networking and Data Communications
• Bluetooth communication protocols
• Data transmission and error handling
• Network security implementation

CPR E 490: Senior Design
• Project management and documentation
• System integration
• Requirements analysis and validation
• Testing and verification procedures

These courses provided the foundation for implementing the OBD-II diagnostic
system, from low-level protocol handling to high-level user interface development.

New Skills/Knowledge acquired that was not taught in courses

Development Technologies
• React Native mobile development
• Bluetooth Low Energy (BLE) implementation
• Cross-platform mobile application development

Automotive Protocols
• OBD-II diagnostic protocols
• ISO 15765-4 (CAN) communication
• Multiple protocol handling (ISO 9141-2, ISO 14230-4)

Testing Tools
• ECUsim 2000 emulator usage
• Protocol verification techniques
• Fault simulation procedures

Hardware Integration
• ESP32 Bluetooth configuration
• OBD-II interface programming
• Multi-protocol hardware communication

Development Practices
• Mobile app state management
• Real-time data handling
• Protocol-specific error handling
• Cross-platform deployment strategies

Table of Contents
1. Introduction 8

1.1. PROBLEM STATEMENT 8

1.2. INTENDED USERS 8

2. Requirements, Constraints, And Standards 8

2.1. REQUIREMENTS & CONSTRAINTS 10

2.2. ENGINEERING STANDARDS 12

3 Project Plan 15

3.1 Project Management/Tracking Procedures 15

3.2 Task Decomposition 16

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 16

3.4 Project Timeline/Schedule 18

3.5 Risks And Risk Management/Mitigation 19

3.6 Personnel Effort Requirements 19

3.7 Other Resource Requirements 22

4 Design 22

4.1 Design Context 22

4.1.1 Broader Context 22

4.1.2 Prior Work/Solutions 23

4.1.3 Technical Complexity 23

4.2 Design Exploration 23

4.2.1 Design Decisions 23

4.2.2 Ideation 23

4.2.3 Decision-Making and Trade-Off 23

4.3 Proposed Design 24

4.3.1 Overview 24

4.3.2 Detailed Design and Visual(s) 24

4.3.3 Functionality 26

4.3.4 Areas of Concern and Development 26

4.4 Technology Considerations 26

4.5 Design Analysis 27

5 Testing 27

5.1 Unit Testing 27

5.2 Interface Testing 27

5.3 Integration Testing 28

5.4 System Testing 29

5.5 Regression Testing 30

5.6 Acceptance Testing 30

5.7 Security Testing (if applicable) 30

5.8 Results 31

6 Implementation 32

7 Professional Responsibility 40

7.1 Areas of Responsibility 40

7.2 Project Specific Professional Responsibility Areas 41

7.3 Most Applicable Professional Responsibility Area 42

8 Closing Material 43

8.1 Discussion 12

8.2 Conclusion 43

8.3 References 46

8.4 Appendices 46

9 Team 47

9.1 TEAM MEMBERS 48

9.2 REQUIRED SKILL SETS FOR YOUR PROJECT 48

(if feasible – tie them to the requirements) 13

9.3 SKILL SETS COVERED BY THE TEAM 48

(for each skill, state which team member(s) cover it) 13

9.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM 49

Typically Waterfall or Agile for project management. 49

9.5 INITIAL PROJECT MANAGEMENT ROLES 49

9.6 Team Contract 49

1. Introduction

1.1. PROBLEM STATEMENT

Modern vehicles are equipped with onboard diagnostic systems that generate codes when

something goes wrong, but for most drivers, understanding these Diagnostic Trouble

Codes (DTCs) is a frustrating challenge. These codes are often cryptic, lacking sufficient

explanation or context. Drivers are left scouring the internet for answers or relying on

mechanics, which can result in costly repairs or potential overcharging due to a lack of

understanding.

In today’s fast-paced world, people don’t have time to research every potential issue with

their car, and many are unsure if they’re receiving an honest assessment from their

mechanic. This knowledge gap affects both seasoned DIY enthusiasts who want to repair

their own vehicles and everyday drivers who just want to avoid unnecessary expenses.

FixIt is here to solve this problem. Our AI-driven app translates those confusing DTC

codes into easy-to-understand insights by gathering information from a wide range of

trusted online sources and communities. It gives users the full story of what’s wrong with

their vehicle, right at their fingertips, empowering them to make informed decisions,

whether they’re performing the repair themselves or taking the car to a professional. In

doing so, FixIt not only saves users time and money but also provides peace of mind,

protecting them from inflated repair costs.

1.2. INTENDED USERS

DIY Car Enthusiasts

These are car owners who enjoy working on their vehicles, often performing maintenance

and repairs on their own. They are typically knowledgeable about car systems but may

not always understand the complexity behind modern diagnostic codes. They value tools

that enhance their ability to maintain their cars independently.

Needs: DIY car enthusiasts need a tool that translates complex DTC codes into actionable

insights, allowing them to quickly diagnose issues without sifting through multiple online

forums or manuals. They want to save money and avoid relying on mechanics for every

repair.

Benefits: FixIt empowers DIYers by providing clear, accurate explanations of DTC
codes, drawn from AI-sourced community insights. By simplifying this process, FixIt
saves them time and ensures they have all the information they need to perform repairs
efficiently. This connects to the broader problem of complex diagnostic codes and
eliminates the hassle of researching each issue.

Everyday Car Owners

This group includes people who rely on their vehicles for daily transportation but have

little technical knowledge about cars. They typically rely on mechanics for maintenance

and repairs and may be susceptible to overcharging or unnecessary services due to a lack

of understanding.

Needs: Everyday car owners need a tool that demystifies car diagnostics, enabling them

to understand what's going wrong with their vehicle without needing to be mechanically

inclined. They want peace of mind and confidence when discussing repairs with

mechanics, knowing they're not being taken advantage of.

Benefits: FixIt ensures these users get straightforward, reliable information about their

car’s issues. By doing so, the app reduces the risk of being overcharged by unscrupulous

mechanics and enables them to make informed decisions about repairs. This value aligns

with the problem of mechanic scams and helps to protect users from inflated repair costs,

giving them more control over their car maintenance.

Car Sellers
Car sellers, whether individuals or small dealerships, need to keep their vehicles in good
working order to sell them for the best price. They may want to diagnose and fix issues
themselves or at least understand the vehicle's condition to communicate effectively with
potential buyers.

Needs: Sellers need a reliable and quick way to assess the health of a vehicle before

putting it up for sale. They want to identify and fix any issues beforehand to maximize

the sale price or provide potential buyers with accurate diagnostic information to build

trust.

Benefits: FixIt helps car sellers by quickly identifying problems and offering solutions,

ensuring their vehicle is in top condition for sale. It also helps them provide detailed

diagnostics to buyers, increasing the likelihood of a successful sale by offering

transparency. This addresses the broader issue of ambiguous diagnostic codes and builds

trust between seller and buyer, fostering smoother transactions.

Connection to Problem Statement:

All these user groups—DIYers, everyday car owners and car sellers —benefit from FixIt

because it tackles the core problem of DTC code complexity. By transforming confusing

diagnostic information into clear, actionable insights, FixIt saves time, money, and effort

for all users while ensuring transparency and preventing mechanic fixes quote scams. The

app bridges the gap between professional-level diagnostics and everyday car

maintenance, ensuring that users are equipped with the knowledge they need to make

informed decisions about their vehicles.

2. REQUIREMENTS, CONSTRAINTS, AND STANDARDS
2.1. REQUIREMENTS & CONSTRAINTS

Functional Requirements:

OBD-II Reader Compatibility:
The system must be able to read DTC codes from all OBD-II compliant vehicles.
(Constraint: OBD-II compatibility required for vehicles manufactured after 1996).

ESP32 Communication:
The ESP32 must establish a stable connection with the user’s phone personal hotspot via Wi-Fi to
transmit data to the cloud.

AI-Based Code Interpretation:
The system must interpret DTC codes using AI to gather insights from community forums,
databases, and other online resources.

Real-Time Diagnostics:
The app must provide real-time analysis of car issues, displaying results as soon as codes are read
from the vehicle.

User Notifications:
The app must send notifications to users when critical car issues are detected that require
immediate attention.

Vehicle Health Monitoring:
The system should continuously monitor car performance metrics and alert the user to potential
preventative maintenance opportunities.

Physical & Resource Requirements:

Hardware Portability:
The OBD-II reader and any other required side hardware must be small and portable enough to be
carried on the go

Wi-Fi and Cloud Integration:
The system requires a stable Wi-Fi connection via the user’s phone personal hotspot to send data to
the cloud for processing.
(Constraint: Requires continuous hotspot availability during operation).

ESP32 Power Supply:
The ESP32 must be powered by the car’s OBD-II port or an internal battery, eliminating the need
for external power sources.
Aesthetic Requirements

User-Friendly App Design:
The app’s interface must be aesthetically pleasing with a clean, modern, and intuitive layout,
incorporating easily recognizable icons and color schemes for different car statuses (e.g., green for
good, red for urgent).

Intuitive App Design:
The app’s interface must be easy for the user to understand and navigate.

User Experiential Requirements:

Easy Setup:
The Wi-Fi OBD dongle and ESP32 must be easy to set up, with clear instructions for pairing the
device with the user’s phone and connecting it to the cloud.

Fast Data Processing:
The system must send DTC data to the cloud and return results within a few moments

Seamless User Experience:
The user experience should be seamless, with the app automatically receiving results from the
cloud once the ESP32 has sent diagnostic data.

Secure User Experience:
The user’s data should be secure, which can be achieved through various cloud networking
protocols.

Economic Requirements:

Cost-Effective Solution:
The Wi-Fi OBD dongle and ESP32 system must be affordable for DIY users and casual car owners.
(Constraint: Total hardware cost must not exceed $100).

2.2. ENGINEERING STANDARDS

What Engineering standards are likely to apply to your project? Some standards might be
built into your requirements (e.g., many projects uses 802.11 ac wifi standard) and many
others might fall out of design.
Q1) Browse the videos available on the IEEE Standards University site
(https://www.standardsuniversity.org/videos/(Links to an external site.)). Select and
watch the following video: https://www.standardsuniversity.org/video/standards-
education-young-professional/ (Links to an external site.), as well as 2 other videos of
your own choosing. Note that these videos are generally only 2-3 minutes long.
Briefly describe, in your own words, the importance of engineering standards.
-

IEEE standards serve as essential building blocks for technological development, with
over 1,300 standards that ensure safety, reliability, and interoperability of products and
systems worldwide. These consensus-driven guidelines, developed by an amazing
organization, cover crucial areas including electrical safety, energy efficiency,
communication protocols, data security, and system interoperability. The standards
enable technologies from different manufacturers to work together seamlessly,
particularly evident in widely-used protocols like Wi-Fi (IEEE 802.11) and renewable
energy integration (IEEE 1547). Through a rigorous development process involving
industry professionals, academics, and government representatives, IEEE standards
create a level playing field that encourages innovation while maintaining safety and
reliability across industries. These standards are particularly vital in emerging fields like
artificial intelligence, quantum computing, and 5G, where they continue to shape the
future of technology while ensuring regulatory compliance and promoting global
technological advancement.

 Q2) Browse the IEEE standards
website: http://standards.ieee.org/findstds/index.html (Links to an external site.). Select a
sub-category as appropriate for your project (possibilities include "Computer
Technology", "Software and Systems Engineering", and "Communications"). Filter by
'Active Standards'.
Select at least 3 standards that appear, based on their descriptions, to have relevance to
your project. Most of these standards can be found on the IEEE Xplore digital library
(http://ieeexplore.ieee.org/Xplore/home.jsp (Links to an external site.)), which you have
access to while using a computer on-campus. If off-campus, you can use the ISU VPN
and library portal to get access (http://instr.iastate.libguides.com/ecpe (Links to an
external site.)
If your project requires software standards, please review this source:
https://www.iso.org/standards.html
Review each of the selected standards. These can be quite lengthy documents, and you
are not expected to read through them in their entirety.
Describe, entirely in your own words, what each standard is about and what it is intended
to accomplish.
-
Software life cycle processes - Maintenance
IEEE/ISO/IEC 14764-2021

https://www.standardsuniversity.org/videos/
https://www.iso.org/standards.html
https://standards.ieee.org/ieee/14764/7701/

ISO/IEC/IEEE 14764 establishes a comprehensive framework for software maintenance throughout
a system's lifecycle, recognizing maintenance as a vital component that consumes substantial
resources. The standard covers both pre-delivery activities (like planning and logistics) and post-
delivery activities (such as help desk support and upgrades). The standard defines four main types
of maintenance:

- Corrective: Fixing identified problems

- Adaptive: Maintaining software usability as environments change

- Preventive: Addressing potential issues proactively

- Perfective: Enhancing performance and maintainability

The process framework encompasses strategy development, planning, problem analysis,
modification implementation, and quality assurance. It provides guidance for both internal teams
and external providers, addressing everything from minor updates to major modifications. The
standard emphasizes careful planning and execution, particularly for systems that must maintain
continuous operation. Key aspects include comprehensive quality assurance measures, thorough
testing requirements, and robust configuration management practices. The standard mandates
proper documentation of all maintenance activities, including problem reports, modification
requests, and implementation details. It establishes clear procedures for change control to maintain
system stability and reliability throughout the maintenance process.

Software testing -- Part 2: Test processes
IEEE/ISO/IEC 29119-2-2021
This international standard (ISO/IEC/IEEE 29119-2) establishes a comprehensive framework for
software testing processes that can be applied across any organization or software development
project. It provides a structured approach to testing through three main process layers:
organizational test processes, test management processes, and dynamic test processes. The
standard aims to help organizations standardize and improve their testing practices by defining
clear processes, roles, and deliverables.

The standard is designed to be flexible and adaptable, allowing organizations to either fully
implement all processes or tailor them to their specific needs. It emphasizes risk-based testing
approaches, helping organizations prioritize testing efforts based on identified risks and potential
impacts. The framework supports both traditional and agile development methodologies and can
accommodate various types of testing, including manual, automated, functional, and non-
functional testing.

A key goal of the standard is to provide those responsible for software testing with the necessary
information and structure to effectively manage and perform testing activities across their
organization. It accomplishes this by defining specific process requirements, outcomes, and
activities while allowing for different levels of conformance. The standard also aligns with other
important software development and quality standards, making it easier for organizations to
integrate it into their existing processes.

The standard's practical value lies in its ability to help organizations establish consistent testing
practices, improve test planning and execution, and better manage testing resources and activities.
By following these standardized processes, organizations can potentially reduce testing risks,
improve software quality, and create more predictable testing outcomes.

https://standards.ieee.org/ieee/29119-2/7498/

Systems and software assurance -- Part 4: Assurance in the life cycle
IEEE/ISO/IEC 15026-4-2021
This standard (ISO/IEC/IEEE 15026-4:2021) provides guidance on how to ensure and demonstrate
that critical system and software properties meet their required levels of assurance throughout
their lifecycle. It focuses on two main aspects: achieving specific assurance claims about a system or
software, and proving that these claims have been met through proper documentation and
evidence. The standard introduces two key process views - one for systems and one for software -
that work alongside existing lifecycle process standards (ISO/IEC/IEEE 15288 and 12207). These
views help organizations integrate assurance activities into their regular development and
maintenance processes. The standard explains how to identify assurance claims (critical properties
that need to be guaranteed), gather evidence to support these claims, and construct valid
arguments demonstrating that the claims have been achieved.

The document is designed to be used in various contexts: for agreements between suppliers and
acquirers, for regulatory compliance, or for internal development process improvement. It provides
specific guidance on how to manage assurance-related activities throughout the project lifecycle,
including planning, risk management, configuration control, and quality assurance.

What makes this standard particularly valuable is its focus on maintaining assurance throughout
the entire system or software lifecycle - not just during initial development. It emphasizes the
importance of documenting and maintaining assurance information, managing changes that might
affect assurance claims, and ensuring that critical properties continue to be met even as systems
evolve over time.

The standard serves as a practical guide for organizations needing to demonstrate that their
systems or software meet specific critical requirements, particularly in areas where failure could
have serious consequences, such as safety, security, or reliability.

Q3) After reviewing some of the technical details of the three published standards, do
you believe it to have relevance to your project? Why or why not? Be specific.
We believe all of them have relevance to our project. The “Maintenance” is relevant
because routinely fix identified issues within our code, and proactively plan for issues
that may arise in the future. The “Test processes” standard has relevance in our project as
it’s essential to our success that we validate our product’s ability to function properly.
And lastly, The “Assurance in the life cycle” as we frequently document our results and
how those results are achieved. This is very useful for proving that specific claims have
been reached.
Q4) Review with your team the standards that each of you have selected. What other
standards did some of your team members choose that are different?
TODO

Q5) What modifications do you intend to make to your project design to incorporate
these standards?
To incorporate the maintenance standard, we will start to perform QA testing on our app,
so that we can proactively identify and fix bugs before we move to production.
To incorporate the testing standard, we will begin to clearly define our testing goals
before incorporating a new feature. This will help us have a clear vision of what results
we want from the feature, and how we can test the new feature.

https://standards.ieee.org/ieee/15026-4/7195/

To incorporate the assurance in the life cycle standard, we will continue to make
documentation that adequately reflects how our systems function. We will also continue
to obtain records of our results to display our progress.

3 Project Plan

3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

Management Style:

We are adopting a hybrid approach that combines agile and waterfall methodologies.

The waterfall aspect ensures that we first focus on foundational tasks, such as setting up

the embedded hardware and basic communication between the OBD dongle, ESP32, and

cloud infrastructure. This foundational work establishes a stable base, which is essential

for later development. Once the hardware is functioning, the team will switch to agile

sprints, iterating on the app interface, backend development, AI integration, and cloud

service improvements. This hybrid approach aligns well with our goals by creating a

solid hardware base and allowing for flexible, iterative improvements on the software

side.

So, to summarize:

Waterfall Phase: Focus on foundational tasks such as setting up the embedded hardware

and basic communication between the OBD dongle, ESP32, and cloud infrastructure.

Agile Phase: Once hardware is functioning, switch to agile sprints for iterative

development of the app interface, backend, AI integration, and cloud service

improvements.

Progress Tracking:

Our team will track project progress using Git for code versioning and GitHub for team

collaboration. We will also hold regular advisor meetings and team check-ins to review

milestones and address challenges. Communication tools like Slack will help maintain

constant team updates, while Trello (or GitHub Projects) may be used for task tracking to

organize sprints and milestones.

We have two semesters to complete the FixIt project. By the end of the first semester, our

goal is to have a barebones prototype that shows all essential communication between the

OBD-II dongle, ESP32, cloud, and mobile app. The app skeleton will be established with

basic features to demonstrate functionality. This first-semester deliverable provides a

foundation for further development and refinement in the second semester.

3.2 TASK DECOMPOSITION

Hardware Setup and Configuration

• Choose and configure the OBD-II dongle and ESP32 for reliable
connectivity.

• Test initial data collection from OBD and data transmission to ESP32.

 Basic Communication and Data Transmission

• Establish WiFi connection between ESP32 and the phone hotspot.

• Set up data transfer from ESP32 to the cloud.

Frontend App Design

• Design user interface elements for easy DTC code interpretation.

• Develop notification and alert systems for real-time diagnostic updates.

Backend and Cloud Infrastructure

• Set up server infrastructure for handling data sent by ESP32.

• Implement database and AI modules to analyze and interpret diagnostic data.

AI Integration

• Develop algorithms to interpret DTC codes and gather insights from
community data.

• Integrate machine learning models for predictive maintenance insights.

Testing and Debugging

• Test hardware in a vehicle with an active check engine light to validate data
accuracy.

• Conduct iterative debugging on the frontend and backend as new features are
integrated.

Final Integration and Validation

• Verify that all hardware, software, and AI functionalities work as expected.

• Conduct user testing and refinement based on feedback.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

1. Hardware Communication

• Milestone: Achieve reliable OBD-II data reading and transmission

• Metric: 80% reliability in OBD-II data reading within the first 3 months

• Evaluation Criteria:

o Test with at least 1 vehicle model
o Conduct 10 consecutive read attempts
o Measure success rate of data transmission to ESP32

2. Cloud Infrastructure

a) Basic Scaling

▪ Milestone: Implement basic scaling for user demand
▪ Metric: Successfully handle 1,000 simulated users
▪ Evaluation Criteria:

▪ Use a load testing tool to simulate user load
▪ Measure response times under various load conditions
▪ Ensure CPU utilization remains below 80% during peak load

b) Failover Handling

▪ Milestone: Implement basic failover for availability issues
▪ Metric: Maintain 95% uptime during simulated failures
▪ Evaluation Criteria:

▪ Simulate failures and measure system response
▪ Verify data consistency after failover
▪ Ensure minimal data loss during failover process

3. Frontend App Development

o Milestone: Complete MVP app with core functionalities
o Metric: Achieve 60% user satisfaction in initial user testing within 6 months
o Evaluation Criteria:

o Conduct usability tests with at least 5 potential users
o Measure task completion rates for key features
o Collect and analyze user feedback through surveys

4. AI Diagnostic Feature

o Milestone: Implement basic AI-driven DTC interpretation
o Metric: Achieve 70% accuracy in interpreting common DTCs within 6 months
o Evaluation Criteria:

o Test against a database of at least 50 known DTCs
o Compare AI interpretations with expert diagnoses
o Measure precision and recall for different categories of DTCs

5. Data Aggregation

o Milestone: Implement basic data collection pipeline
o Metric: Process and store data from 100 simulated vehicles within 1 week
o Evaluation Criteria:

o Measure data ingestion rate
o Verify data integrity in the database
o Assess query performance for common scenarios

3.4 PROJECT TIMELINE/SCHEDULE

1. Lack of Active Check Engine Light in Test Vehicles

• Probability: 0.6

• Impact: High

• Mitigation Strategies:

• Use a simulated environment with software like OBD-II Simulator to generate
predictable diagnostic trouble codes (DTCs) for controlled testing.

• Acquire a dedicated test vehicle with known issues that consistently trigger
the check engine light.

• Partner with a local mechanic or auto shop to access vehicles with active

DTCs for real-world testing.

2. Competition from Existing OBD-II Diagnostic Tools

• Probability: 0.7

• Impact: Medium

• Mitigation Strategies:

• Differentiate FixIt by emphasizing its AI-driven insights and predictive
maintenance capabilities, which provide more value than standard code
readers.

• Highlight FixIt's user-friendly interface and community features that help
users understand and resolve issues without extensive technical knowledge.

• Conduct market research to identify underserved niches or unique features

that set FixIt apart from competitors.

3. Hardware Communication and Reliability Issues

• Probability: 0.5

• Impact: High

• Mitigation Strategies:

• Develop comprehensive testing procedures that cover various scenarios,
including edge cases and failure modes.

• Use high-quality, automotive-grade components for the OBD-II dongle and
ESP32 to ensure durability and reliability.

• Implement robust error handling and logging to quickly identify and diagnose
communication issues.

• Maintain a stock of backup hardware components to minimize downtime in

case of failures during development or testing.

4. Delays in Cloud Backend Integration

• Probability: 0.4

• Impact: Medium

• Mitigation Strategies:

• Adopt a modular architecture that decouples the frontend, backend, and
hardware components, allowing development to progress independently.

• Prioritize backend development tasks and allocate additional resources if
necessary to keep the project on schedule.

• Implement clear API contracts and interfaces to minimize dependencies and
enable parallel development efforts.

• Regularly sync with the team to identify and address any integration
challenges proactively.

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

Protocol Communication (P=0.7)

• Risk: OBD-II protocols may fail or provide inconsistent readings
• Mitigation:

• Use ECUsim 2000 for development and testing
• Implement multiple protocol support (ISO 15765-4, ISO 9141-2)
• Fallback to basic protocol if advanced features fail

ESP32 Compatibility (P=0.6)

• Risk: ESP32 may not handle all OBD protocols efficiently
• Mitigation:

• Implement protocol verification using SOMM command
• Use error handling for CAN communication issues
• Consider alternative microcontrollers if needed

Real-time Performance (P=0.6)

• Risk: Slow response times
• Mitigation:

• Optimize communication protocols
• Implement efficient data handling
• Use local caching when possible

3.6 PERSONNEL EFFORT REQUIREMENTS

Task Assigned Team Member(s) Est. Hours

Create backend and cloud

authentication and

authorization flows for user

sign in, create account, forgot

Will 15

password, change password,

etc.

Create frontend

authentication and

Authorization flows for user

sign in, create account, forgot

password, change password,

etc.

Mohamed and Jonathan 15

Create a production and

development environment, to

enhance the developer

experience by giving

developers a realistic

environment to test in.

Will 7

Create the ability to build and

take down our prod and devl

environments as needed, as

we don’t need either of them

running 24/7

Will 4

Create various webscrapers to

aggregate relevant data to

pre-prompt our LLM with.

These webscrapers will be

run on cloud compute, so I’ll

need to set up the cloud

environment for these as

well.

Will 20

Organize database schemas

and tables to store the

webscraped data

Will 2

UI Drafting and Design along

with general app layout along

with iterative fixes and

updates

Mohamed 12

Hardware setup, including

OBD-II dongle and ESP32

configuration, testing, and

troubleshooting.

Ben 22

App development, including

implementing UI designs,

integrating with backend

services, and ensuring cross-

platform compatibility.

Mohamed and Jonathan 40

Implement notification and

alert systems for real-time

diagnostic updates.

Jonathan 10

Develop algorithms to

interpret DTC codes and

gather insights from

community data.

Will and Mohamed 30

Conduct hardware testing in a

vehicle with an active check

engine light to validate data

accuracy.

Ben 15

Perform iterative debugging

on the frontend and backend

as new features are

integrated.

Mohamed and Jonathan 20

Verify that all hardware,

software, and AI

functionalities work as

expected during final

integration.

Ben and Jonathan 10

Documentation of technical

specifications, user guides,

and project progress.

Jonathan 15

3.7 OTHER RESOURCE REQUIREMENTS

Technical Resources

• OBD-II Readers: Devices compatible with OBD-II systems for reading and
transmitting Diagnostic Trouble Codes (DTCs).

• ESP32 Modules: Microcontroller units for establishing Wi-Fi connections and
data transmission to the cloud.

• Testing Equipment: Tools for validating the functionality of hardware and
software components.

• Software Tools: Access to development platforms for app programming, AI
model training, and user interface design.

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context

Area Description Examples

Public health,
safety, and
welfare

How does your project affect the general
well-being of various stakeholder groups?
These groups may be direct users or may be
indirectly affected (e.g., solution is
implemented in their communities)

Increasing/reducing exposure to
pollutants and other harmful
substances, increasing/reducing
safety risks, increasing/reducing job
opportunities

Global, cultural,
and social

How well does your project reflect the
values, practices, and aims of the cultural
groups it affects? Groups may include but
are not limited to specific communities,
nations, professions, workplaces, and ethnic
cultures.

Development or operation of the
solution would violate a profession’s
code of ethics, implementation of the
solution would require an undesired
change in community practices

Environmental What environmental impact might your
project have? This can include indirect
effects, such as deforestation or
unsustainable practices related to materials
manufacture or procurement.

Increasing/decreasing energy usage
from nonrenewable sources,
increasing/decreasing
usage/production of non-recyclable
materials

Economic What economic impact might your project
have? This can include the financial
viability of your product within your team
or company, cost to consumers, or broader

Product needs to remain affordable
for target users, product creates or
diminishes opportunities for
economic advancement, high

economic effects on communities, markets,
nations, and other groups.

development cost creates risk for
organization

4.1.2 Prior Work/Solutions

Include relevant background/literature review for the project (cite at least 3 references for
literature review in IEEE Format. See link: https://ieee-
dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf)
– If similar products exist in the market, describe what has already been done
– If you are following previous work (e.g., a previous senior design project), cite that and
discuss the advantages/shortcomings
– Note that while you are not expected to “compete” with other existing products /
research groups, you should be able to differentiate your project from what is available.
Thus, provide a list of pros and cons of your target solution compared to all other related
products/systems.
Detail any similar products or research done on this topic previously. Please cite your
sources and include them in your references. All figures must be captioned and
referenced in your text.

4.1.3 Technical Complexity

Provide evidence that your project is of sufficient technical complexity. Use the
following metric or argue for one of your own. Justify your statements (e.g., list the
components/subsystems and describe the applicable scientific, mathematical, or
engineering principles)

1. The design consists of multiple components/subsystems that each utilize distinct
scientific, mathematical, or engineering principles –AND–

2. The problem scope contains multiple challenging requirements that match or
exceed current solutions or industry standards.

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

List key design decisions (at least three) that you have made or will make. These can
include, but are not limited to, materials, subsystems, physical components,
sensors/chips/devices, physical layout, features, etc. Describe how you made/will make
these decisions and how they have affected or are likely to affect project success.

4.2.2 Ideation

For at least one design decision, describe how you ideated or identified potential options
(e.g., lotus blossom technique). Describe at least five options that you considered.

4.2.3 Decision-Making and Trade-Off

Demonstrate the process you used to identify the pros and cons or trade-offs between
each of your ideated options. You may wish you include a weighted decision matrix or
other relevant tool. Describe the option you chose and why you chose it.

https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf
https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf

4.3 PROPOSED DESIGN

4.3.1 Overview

Provide a high-level description of your current design. This description should be
understandable to non-engineers (i.e., the general public). Describe key components or
sub-systems and how they contribute to the overall design. You may wish to include a
basic block diagram, infographic, or other visual to help communicate the overall design.

4.3.2 Detailed Design and Visual(s)

Provide a detailed, technical description of your design, aided by visualizations. This
description should be understandable to peer engineers. In other words, it should be
clearly written and sufficiently detail such that another senior design team can look
through it and implement it.
The description should include a high-level overview written for peer engineers. This
should list all sub-systems or components, their role in the whole system, and how they
will be integrated or interconnected. A visual should accompany this description.
Typically, a detailed block diagram will suffice, but other visual forms can be acceptable.
The description should also include more specific descriptions of sub-systems and
components (e.g., their internal operations). Once again, a good rule of thumb is: could
another engineer with similar expertise build the component/sub-system based on your
description? Use visualizations to support your descriptions. Different visual types may
be relevant to different types of projects, components, or subsystems. You may include,
but are not limited to: block diagrams, circuit diagrams, sketches/pictures of physical
components and their operation, wireframes, etc.

Overall communication Design:

Cloud Design:

4.3.3 Functionality

Describe how your design is intended to operate in its user and/or real-world context.
What would a user do? How would the device/system/etc. respond? This description can
be supplemented by a visual, such as a timeline, storyboard, or sketch.

4.3.4 Areas of Concern and Development

How well does/will the current design satisfy requirements and meet user needs?
Based on your current design, what are your primary concerns for delivering a
product/system that addresses requirements and meets user and client needs?
What are your immediate plans for developing the solution to address those concerns?
What questions do you have for clients, TAs, and faculty advisers?

4.4 TECHNOLOGY CONSIDERATIONS

Describe the distinct technologies you are using in your design. Highlight the strengths,
weakness, and trade‐offs made in technology available. Discuss possible solutions and
design alternatives.

4.5 DESIGN ANALYSIS

Discuss what you have done so far, i.e., what have you built, implemented, or tested? Did
your proposed design from 4.3 work? Why or why not? Based on what has worked or not
worked (e.g., what you have or haven’t been able to build, what functioned as expected
or not), what plans do you have for future design and implementation work? For
example, are there implications for the overall feasibility of your design or have you just
experienced build issues?

5 Testing

Testing is an extremely important component of most projects, whether it involves a
circuit, a process, power system, or software.

The testing plan should connect the requirements and the design to the adopted test
strategy and instruments. In this overarching introduction, give an overview of the testing
strategy and your team’s overall testing philosophy. Emphasize any unique challenges to
testing for your system/design.

In the sections below, describe specific methods for testing. You may include additional
types of testing, if applicable to your design. If a particular type of testing is not
applicable to your project, you must justify why you are not including it.

When writing your testing planning consider a few guidelines:

• Is our testing plan unique to our project? (It should be)

• Are you testing related to all requirements? For requirements you’re not testing
(e.g., cost related requirements) can you justify their exclusion?

• Is your testing plan comprehensive?

• When should you be testing? (In most cases, it’s early and often, not at the end of
the project)

5.1 UNIT TESTING
Frontend Testing:

- Unit tests for individual UI components that display DTCs and their interpretations

- Testing component rendering, user interactions, and state management

- Tools: Jest and React Native Testing Library for component testing
Backend Testing:

- Unit tests for API endpoints that handle DTC data and LLM communication

- Testing request/response handling and data validation

- Tools: pytest for Python backend testing

5.2 INTERFACE TESTING
Interfaces in our Design:
Mobile App Frontend

- User Interface components for displaying DTCs and diagnostic information

- Bluetooth interface for communicating with ESP32 device

- API interface for communicating with backend services
Backend Services

- REST API endpoints handling DTC data processing

- Database interface for storing vehicle and user information

- LLM integration interface for code interpretation
Interface Testing Approach
API Integration Testing

- Testing data flow between frontend and backend services

- Validating request/response formats for DTC processing

- Testing error handling and recovery scenarios

- Tools: Bruno for API testing, Jest for frontend API integration tests
Bluetooth Communication Testing

- Testing data transmission between ESP32 and mobile app

- Validating connection stability and error recovery

- Testing boundary conditions for data packets
Database Interface Testing

- Testing data persistence and retrieval operations

- Validating data integrity across system components

- Testing concurrent access patterns
- Tools: SQLMap for database testing

5.3 INTEGRATION TESTING
Critical Integration Paths
Mobile-to-ESP32 Integration

- Bluetooth communication between mobile app and ESP32 device

- Critical due to requirement for real-time diagnostics and OBD-II compatibility

- Testing using BLE simulation tools and real device testing

- Validation of data packet integrity and connection stability
ESP32-to-OBD Integration

- Communication between ESP32 and vehicle's OBD-II port

- Critical for obtaining accurate DTCs from all compliant vehicles

- Testing through hardware-in-the-loop simulation

- Verification of proper code reading across different vehicle models

Integration Points
Frontend-Backend Communication

- REST API endpoints for DTC processing and interpretation

- Validation of request/response cycles and error handling
LLM Integration

- Communication between backend and AI service for code interpretation

- Verification of interpretation accuracy and response times

Testing Approach
Point-to-Point Testing

- Each integration point tested individually for reliability

- Focus on data transformation and routing between systems

- Tools: Bruno for API testing, BLE testing frameworks

End-to-End Testing

- Test complete flow from OBD reading to user display

- Tools: Automated testing frameworks, system integration test suites

5.4 SYSTEM TESTING

System Level Testing Strategy
OBD-II Compliance Testing

- Testing compatibility with vehicles from 1996 onwards

- Verification of DTC code reading accuracy across different manufacturers
- Testing hardware connection stability
- Tools: OBD-II simulators

Wi-Fi Communication Testing

- ESP32 to phone hotspot connection reliability

- Data transmission success rate measurement

- Connection recovery after interruptions

- Tools: Wi-Fi analyzers, network stress testing tools
Cloud Integration Flow

- Cloud processing and AI interpretation

- Response delivery to mobile app

- Tools: AWS testing tools, cloud monitoring services such as Datadog
Hardware Validation
Power Management

- OBD-II port power supply testing

- ESP32 power consumption measurement

- Battery life testing (if applicable)

- Tools: Power consumption analyzers
Physical Requirements

- Size and portability verification
- Environmental condition testing

- Durability testing

- Tools: Environmental test chambers
Security and Data Protection
Authentication Testing

- User data security validation
- Cloud security protocol testing

- Privacy compliance verification
- Tools: Security testing tools such as mend and checkmarx

User Experience Testing
Interface Usability

- Setup process validation
- Navigation flow testing

- Visual design compliance

- Tools: Jest
Performance Metrics

- Response time measurements against requirements

- System reliability under various conditions

- Cost validation against $100 hardware constraint

- Tools: Performance monitoring suites, cost analysis tools

5.5 REGRESSION TESTING
Regression testing for our system focuses on preserving critical functionalities driven by our core
requirements: OBD-II code reading, Wi-Fi communication between ESP32 and phone, real-time
diagnostics delivery, and accurate AI-based code interpretation. We can have quality regression
testing by integrating existing unit, integration, and end-to-end tests into a CI/CD pipeline that
runs these tests automatically when new code is pushed. Test results should be logged and
archived, allowing for historical comparison and trend analysis to identify gradual performance
degradation.

5.6 ACCEPTANCE TESTING

Functional Requirements Demonstration
Vehicle Compatibility

- Live demonstration with multiple vehicle makes and models

- Real-time DTC code reading and interpretation

- Verification of compatibility with post-1996 vehicles
Non-Functional Requirements Validation
Cost Effectiveness

- Hardware cost breakdown presentation
- Component cost optimization demonstration
- Total system cost validation against $100 constraint

Client Involvement Strategy
Phase 1:

- Client observes system setup and basic functionality

- Hands-on testing with their own vehicles

- Immediate feedback collection and implementation
Phase 2: Extended Testing

- Client receives beta version for extended testing period
- Daily usage monitoring and feedback collection

- Performance metrics gathering in real-world conditions
Phase 3: Final Validation

- Performance metrics review against acceptance criteria
- Comprehensive demonstration of all requirements
- Final adjustments based on client feedback

5.7 SECURITY TESTING (IF APPLICABLE)
Authentication and Authorization
User Access Control

• Testing role-based access controls

• Use secure password policies
Data Security

• Testing encryption of vehicle diagnostic data in transit

• Testing API endpoint security and access controls
Network Security Communication Security

- Testing Bluetooth connection security between mobile app and ESP32

- Validation of secure Wi-Fi communication protocols

- Testing API endpoint SSL/TLS implementation
- Testing the API for rate limit abuse attacks

- Verification of secure cloud service communications with our virtual private cloud

5.8 RESULTS

What are the results of your testing thus far? Include any numerical, graphical, or
qualitative testing results here? How do they demonstrate compliance with the
requirements or addressing user needs? Use a summary narrative to discuss what you’ve
learned and what next steps need to be taken.

Our results thus far have been basic implementations of unit and integration testing, that
have allowed us to verify the basics of our software working. One such example would
be validating our API calls to chatGPT with Bruno:

Our progress with unit and integration testing thus far has allowed us to show our
compliance with our requirements by displaying that the chain of communication within
our app functions properly and can serve users information. Our testing has also helped
us proactively realize when a new code will break something, when integrating new
features. This helps us provide for our users, as it ensures we have a working app in
production.

6 Implementation
Describe any (preliminary) implementations of your design thus far. Support any general,
descriptive text with relevant images. If your project has inseparable activities between
design and implementation, you can list them either in the Design section or this section.

On the frontend, we’ve developed and iterated on a simple and effective design. Our
design goals are for our UI to be easy to understand and visually appealing.

On the backend, we’ve implemented basic Flask endpoints that allow communicate from
the mobile app, to our application server, to an LLM model, back to the application
server, and back to the mobile app.

In our hardware, we’ve created a system that can receive DTC codes from the user’s car,
and send them to our mobile application.

In the cloud, we’ve created a scalable and secure infrastructure.

Cloud

We’ve created a scalable, highly available, and secure infrastructure that can handle
many of our compute needs. We’ve also focused on the developer experience by
implementing a system that prevents developers from simultaneously modifying our
cloud infrastructure, preventing accidental destruction of infrastructure.

Architecture diagram:

Scalability:

We use an autoscaling group to automatically increase and our EC2 instances with our

traffic. As traffic increases, we create more EC2 instances. As traffic decreases, we

remove our EC2 instances. Here are our conditions for scaling:

Scale-out conditions (if ANY of these metrics are true):

1. CPU Utilization > 70%

2. Memory Utilization > 80%

3. Request Count > 1000/minute/instance

4. Queue Length > 100 messages

5. Concurrent Connections > 500/instance

Scale-out protection

- Maximum 3 instances per AZ

- prevent runaway scaling and control costs

Scale-in conditions (when ALL metrics are below):

1. CPU Utilization < 30%

2. Memory Utilization < 40%

3. Request Count < 300/minute/instance

4. Queue Length < 20 messages

5. Concurrent Connections < 100/instance

Scale-in protection

- Prevent accidental termination of essential instances

-Essential instance == critical to our application's functionality. Want to protect from

being terminated during scale-in events. For example the instance might be running

important background jobs or handling long-running processes.

Preventing concurrent modification of cloud infrastructure:

In simple terms it’s like this:

Scenario 1: Someone Else is Running Terraform

Imagine trying to use a bathroom:

• You try to open the door (Developer runs terraform apply)

• You see it’s locked (DynamoDB shows lock exists)

• You get told “Occupied!” (Terraform returns error: State locked)

• You have to wait until the person is done

Scenario 2: No Existing Lock

Like successfully using a bathroom:

• You check if it’s occupied (Terraform checks DynamoDB)

• It’s free, so you lock the door (Terraform creates lock)

• You look in the mirror to see what needs fixing (Terraform reads current state from S3)

• You make your changes (Terraform makes infrastructure changes)

• You check the mirror again to confirm changes (Terraform writes new state to S3)

• You unlock the door when done (Terraform removes lock)

• You leave, letting others know it’s free (Terraform completes)

Scalability:

We enhance scalability with our ALB (Elastic Load Balancer), as our ALB provides
Traffic Distribution

• Evenly distributes incoming requests across EC2 instances
• Spans multiple Availability Zones for redundancy

• Automatically routes traffic to healthy instances only
Auto Scaling Integration

• Works with EC2Auto Scaling group

• Dynamically adds/removes EC2 instances based on demand

• Automatically registers new instances

• Removes failed instances from rotation
Health Management

• Continuously monitors instance health

• Routes traffic away from unhealthy instances

• Enables instance maintenance without service interruption

• Maintains service availability during scaling events

Security:

Virtual Private Cloud

• VPC creates an isolated network environment (10.1.0.0/16)

• Public subnets (10.1.1.0/24, 10.1.2.0/24):
o Connected to Internet Gateway
o Host public-facing resources like load balancers
o Allow controlled inbound/outbound internet access

• Private subnets (10.1.3.0/24, 10.1.4.0/24):
o No direct internet access
o Host sensitive resources like databases
o Protected from direct external access

Security Groups

Security groups allow or disallow traffic based on where the traffic is coming from and
thus are essential for security.

ALB Security Layer

• Inbound: Allows all traffic (0.0.0.0/0) because mobile users connect from
anywhere

• Outbound: Only allows traffic to ECS security group

• Acts as first line of defense, like a bouncer checking IDs

EC2 (compute) Security Layer

• Inbound: Only accepts traffic from ALB security group

• Outbound: Limited to:

• HTTPS (443) for container updates

• Specific ports for RDS access

• Protects application containers from direct external access

RDS (Database) Security Layer

• Inbound: Only allows database connections from ECS security group

• Outbound: No rules needed (private subnet blocks internet access)

• Database completely isolated from external access

API Gateway

The API Gateway essentially acts as a security checkpoint, filtering and validating all requests
before they reach our VPC resources (Load Balancer → ECS → RDS), providing a crucial layer of
defense for our infrastructure.

Authorization and Authentication

• Integrates with Cognito for user authentication

• Validates tokens and API keys

• Blocks unauthorized requests before VPC entry

• Enforces fine-grained access control

Traffic Protection
• Rate limiting prevents DDoS attacks
• Request validation blocks malicious inputs

• WAF integration stops common web exploits

• Throttling controls per-user usage

Security Architecture Benefits
• Centralizes security enforcement

• Handles SSL/TLS termination

• Monitors API usage patterns

• Logs security events

• Protects backend services from direct exposure

Application Load Balancer

Our ALB acts a revers proxy, which creates a secure entry point where traffic is inspected and
filtered before reaching our application servers.

ALB Security Benefits as Reverse Proxy Traffic Protection

Hides internal network structure and server IPs
Terminates SSL/TLS connections
Filters malicious traffic
Blocks unauthorized access
Prevents DDoS through rate limiting

Request Validation
Validates HTTP headers
Integrates with Cognito for authentication
Performs health checks on targets
Blocks malformed requests
Enforces connection limits

Access Control
Centralizes security policies
Routes traffic based on paths/hosts/IPs
Controls request queuing and throttling
Manages connection pooling
Enables circuit breaking for failure protection

The ALB acts like a security bouncer:
Positioned in public subnet
Evaluates all incoming requests

Forwards only legitimate traffic to ECS
Protects backend services from direct exposure
Maintains security while enabling scalability

7 Ethics and Professional Responsibility
Use this section to describe your considerations of engineering ethics and professional
responsibility. Most importantly how are you defining engineering ethics and
professional responsibility in the context of your project and what steps are you taken to
ensure ethical and responsible conduct. Each section references one type of
ethical/professional responsibility considerations. You may also use this introductory
section to note any overarching ethical philosophy among your team.

7.1 AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS

Area of Responsibility Definition IEEE Code Item Team Implementation

Technical Competence

Maintaining and

improving technical

skills and

knowledge

"maintain and improve our

technical competence"

Implemented proper protocol

handling and verification using

ECUsim commands (SP, SOMM)

for accurate diagnostics

Area of Responsibility Definition IEEE Code Item Team Implementation

Technical Quality

Ensuring high

standards in

development and

testing

"to acknowledge and correct

errors promptly"

Using ECUsim testing protocols

and error handling (CAN ERROR,

INVALID PARAM) for reliable

operation

Procedural Quality

Following

established

processes and

standards

"to seek, accept, and offer

honest criticism of technical

work"

Following OBD-II protocols and

standards, implementing proper

command sequences

Professional Impact

Understanding how

work affects others

"to avoid real or perceived

conflicts of interest whenever

possible"

Ensuring accurate DTC

interpretation through proper

protocol implementation

Societal Impact

Considering

broader

implications of

work

"to improve the

understanding by individuals

and society of the capabilities

and societal implications of

conventional and emerging

technologies"

Empowering users with accurate

vehicle diagnostics

Strong Performance Area
Our team excels in Technical Quality implementation. We've established robust error
handling and verification procedures using ECUsim commands like SOMM for
monitoring, SF for fault testing, and proper protocol initialization. This ensures reliable
diagnostic data transmission and interpretation.

Area Needing Improvement
Procedural Quality requires improvement. While we follow basic protocols, we need to
implement more comprehensive documentation of command sequences and error
handling procedures. Future improvements should include:

• Structured testing procedures for each protocol
• Documentation of all error scenarios

• Implementation of automated testing sequences
• Regular code reviews and protocol verification

7.2 FOUR PRINCIPLES

Context Area Beneficence Nonmaleficence Respect for Autonomy Justice

Technical

Accurate DTC
interpretation through
proper protocol
implementation

Error handling
prevents vehicle
system damage

Users can enable/disable
monitoring (SOMM
command)

Equal access to
diagnostic
information
across vehicle
types

Economic
Cost-effective
diagnostic solution

Prevents unnecessary
repair expenses

User control over
diagnostic depth

Affordable
access to vehicle
diagnostics

Environmental
Early detection of
emissions issues

Proper protocol
verification reduces
testing waste

User choice in maintenance
timing

Equal access to
emissions data

Social
Community
knowledge sharing

Protection of vehicle
systems through
proper commands

User control over data
sharing

Equal access to
diagnostic tools

Important Pair: Technical-Beneficence
Our project excels in accurate DTC interpretation and protocol handling. Using
standardized commands (SP, SOMM, SF) ensures reliable diagnostic information,
benefiting users through precise vehicle health monitoring. Implementation of
proper error handling and verification procedures maintains data integrity.

Lacking Pair: Technical-Justice
Our project currently shows limitations in technical justice due to protocol
restrictions and compatibility issues. Some vehicles with specific protocols (like
J1850 PWM/VPW) may have limited access to diagnostic features compared to
those using ISO 15765-4 (CAN). This creates unequal access to diagnostic
capabilities across different vehicle models.
To address this limitation:

1. Implement support for multiple protocols (SP command)
2. Develop protocol conversion capabilities
3. Create standardized interpretation methods across all supported protocols
4. Ensure equal diagnostic depth regardless of protocol used

7.2 VIRTUES

Team Virtues
Technical Excellence
• Importance: Ensures reliable diagnostic information
• Implementation:

• Thorough protocol testing using ECUsim commands
• Proper error handling (CAN ERROR, INVALID PARAM)
• Systematic approach to protocol verification

Transparency
• Importance: Builds trust within team and with users
• Implementation:

• Clear documentation of protocol implementations
• Open communication about technical limitations
• Sharing of testing results and error conditions

Individual Virtues Demonstrated
Ben Muslic (Hardware Engineer)
• Demonstrated Virtue: Precision
• Importance: Critical for accurate diagnostic readings
• Demonstration: Careful implementation of protocol commands and error handling
Jonathan Duron (Software Engineer)
• Demonstrated Virtue: Adaptability
• Importance: Essential for handling various protocols and error conditions
• Demonstration: Implementing flexible protocol switching and error recovery

Virtues to Improve
Will Griner
• Virtue to Develop: Patience
• Importance: Needed for thorough testing and debugging
• Plan: Implement more comprehensive testing procedures

Mohammed
• Virtue to Develop: Communication
• Importance: Essential for team coordination
• Plan: Better documentation of code changes and protocol implementations

8 Closing Material

8.1 CONCLUSION

Multiple setups were tried regarding the FixIt project. The end goal is to make it as easy
as possible for the everyday user.

Arduino Uno with MCP2515 CAN Module

Purpose:

• Initial setup to directly read OBD-II data from the car.

Setup:

• Hardware:
o Arduino Uno
o MCP2515 CAN Bus Module
o Male OBD connector

• Software:
o Configured the MCP2515 module at 500 kbps.
o Displayed live data like RPM and DTC codes on the Arduino serial

monitor.

Outcome:

• Successfully retrieved OBD-II data but lacked advanced features like wireless
connectivity.

• Too much hardware and wiring.

• Unsafe

2. WiFi OBD Dongle with ESP32

Purpose:

• To enhance the system with WiFi and cloud communication capabilities.

Setup:

• Hardware:
o ESP32 microcontroller
o WiFi OBD-II dongle

• Communication:
o The ESP32 connected to the WiFi OBD-II dongle to retrieve data.

Outcome:

• Established communication between components.

• Viewed DTC codes locally

Challenges:

• Dependency on stable internet for functionality.

• User had to abandon WiFi connection to connect to ESP32

• Too much hardware

• Would have to use phone as a “router” for any web communication

3. BLE (Bluetooth Low Energy) with ESP32

Purpose:

• To simplify user connectivity and reduce WiFi dependency.

Setup:

• Hardware:
o ESP32 (BLE-enabled)
o WiFi OBD-II dongle

• Communication:
o The FixIt app connects to the ESP32 via Bluetooth.
o The ESP32 communicates with the WiFi OBD-II dongle to gather

diagnostic data.

Outcome:

• Simplified user interaction using BLE.

• Reduced WiFi dependency for the user-facing app.

Challenges:

• The team is currently unable to decipher OBD traffic directly within the app,
relying on the ESP32 for intermediate processing.

Summary of Current Status:

• Current Workflow:
o The FixIt app connects to the ESP32 via Bluetooth, and the ESP32

communicates with a WiFi OBD reader to gather diagnostic data.
o The ESP32 handles OBD data parsing, but the app cannot yet process raw

OBD traffic directly.

• Key Challenges:
o Deciphering and processing OBD-II data directly in the app to potentially

eliminate intermediate hardware in the future.
o Need batteries or power supplies to run hardware outside of laptop
o If continuing to use hardware, a 3D printed casing is needed to combine

everything into one piece
o App has starting UI and can connect to read DTC, however no AI

functionality yet exists

8.2 REFERENCES

List technical references and related work / market survey references. Do professional
citation style (ex. IEEE). See link: https://ieee-
dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf

[1] Adam Varga, “How to hack your car | Part 1 - The basics of the CAN bus,”
YouTube, Mar. 19, 2020. https://www.youtube.com/watch?v=cAAzXM5vsi0 (accessed
Dec. 08, 2024).

[2] PowerBroker2, “ELMduino,” GitHub, Jul. 07, 2022.
https://github.com/PowerBroker2/ELMduino

[3] dotintent, “GitHub - dotintent/react-native-ble-plx: React Native BLE library,”
GitHub, Jul. 09, 2024. https://github.com/dotintent/react-native-ble-plx

[4] “OBD-II PIDs,” Wikipedia, May 19, 2021. https://en.wikipedia.org/wiki/OBD-
II_PIDs

8.3 APPENDICES

Any additional information that would be helpful to the evaluation of your design
document.

If you have any large graphs, tables, or similar data that does not directly pertain to the
problem but helps support it, include it here. This would also be a good area to include
hardware/software manuals used. May include CAD files, circuit schematics, layout etc,.
PCB testing issues etc., Software bugs etc.

https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf
https://ieee-dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf
https://www.youtube.com/watch?v=cAAzXM5vsi0
https://github.com/PowerBroker2/ELMduino
https://github.com/PowerBroker2/ELMduino
https://github.com/dotintent/react-native-ble-plx
https://github.com/dotintent/react-native-ble-plx
https://en.wikipedia.org/wiki/OBD-II_PIDs
https://en.wikipedia.org/wiki/OBD-II_PIDs

9 Team
Complete each section as completely and concisely as possible. We strongly recommend
using tables or bulleted lists when applicable.

9.1 TEAM MEMBERS

9.2 REQUIRED SKILL SETS FOR YOUR PROJECT

Protocol Implementation

• OBD-II communication protocols (ISO 15765-4, ISO 9141-2)

• CAN bus communication

• Error handling and verification procedures

Hardware Programming

• ESP32 configuration
• UART communication

• Memory management

• Protocol switching and timing

Testing and Verification

• Protocol verification (SOMM command)

• Fault simulation (SF command)

• Error detection and handling

• Device monitoring

Software Development

• React Native

• Bluetooth implementation

• Real-time data handling

• User interface design

Team Skill Coverage

Hardware Engineer

• Protocol implementation

• ESP32 programming

• Error handling

• Memory management

Software Engineer

• Mobile app development

• Bluetooth integration

• User interface design

• Data processing

Testing Engineer

• Protocol verification

• Fault simulation

• Performance monitoring

• Error detection

9.3 SKILL SETS COVERED BY THE TEAM

Hardware Engineer Ben Muslic

• OBD-II protocol configuration (SP command)
• Protocol switching and timing
• Error handling (CAN ERROR, INVALID PARAM)
• Memory management

Software Engineer Jonathan Duron

• React Native mobile development
• Bluetooth communication
• User interface design
• Real-time data processing

QA Engineer Mohammed

• Protocol monitoring (SOMM command)
• Fault simulation (SF command)
• Error detection and logging
• Performance testing

Team Lead Will Griner

• ECU configuration (EA, EP commands)
• System architecture
• Protocol validation
• Documentation

9.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

Typically, Waterfall or Agile for project management.

9.5 INITIAL PROJECT MANAGEMENT ROLES

(Enumerate which team member plays what role)

9.6 Team Contract

Team Members:
1) ______Jonathan Duron____________________ 2)

3) _______________________________ 4) _______________________________
5) _______________________________ 6) _______________________________
7) _______________________________ 8) _______________________________
Team Procedures
Day, time, and location (face-to-face or virtual) for regular team meetings:
2. Preferred method of communication updates, reminders, issues, and scheduling (e.g.,
e-
mail, phone, app, face-to-face):
3. Decision-making policy (e.g., consensus, majority vote):
4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes
be
shared/archived):
Participation Expectations
1. Expected individual attendance, punctuality, and participation at all team meetings:
2. Expected level of responsibility for fulfilling team assignments, timelines, and
deadlines:
3. Expected level of communication with other team members:
4. Expected level of commitment to team decisions and tasks:
Leadership
1. Leadership roles for each team member (e.g., team organization, client interaction,
individual component design, testing, etc.):
2. Strategies for supporting and guiding the work of all team members:
3. Strategies for recognizing the contributions of all team members:
Collaboration and Inclusion
1. Describe the skills, expertise, and unique perspectives each team member brings to the
team.
2. Strategies for encouraging and support contributions and ideas from all team members:
3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how
will
a team member inform the team that the team environment is obstructing their
opportunity or ability to contribute?)
Goal-Setting, Planning, and Execution
1. Team goals for this semester:
2. Strategies for planning and assigning individual and team work:
3. Strategies for keeping on task:
Consequences for Not Adhering to Team Contract
1. How will you handle infractions of any of the obligations of this team contract?
2. What will your team do if the infractions continue?
**

a) I participated in formulating the standards, roles, and procedures as stated in this
contract.
b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the
consequences as stated in this contract.
1) ___ DATE

2) ___ DATE

3) ___ DATE

4) ___ DATE

5) ___ DATE

6) ___ DATE

7) ___ DATE

8) ___ DATE

	1. Introduction
	1.1. Problem Statement
	1.2. Intended Users
	2. Requirements, constraints, and standards
	2.1. Requirements & Constraints
	2.2. Engineering Standards

	3 Project Plan
	3.1 Project Management/Tracking Procedures
	3.2 Task Decomposition
	3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria
	3.4 Project Timeline/Schedule
	3.5 Risks and Risk Management/Mitigation
	3.6 Personnel Effort Requirements
	3.7 Other Resource Requirements
	Technical Resources

	4 Design
	4.1 Design Context
	4.1.1 Broader Context
	4.1.2 Prior Work/Solutions
	4.1.3 Technical Complexity

	4.2 Design Exploration
	4.2.1 Design Decisions
	4.2.2 Ideation
	4.2.3 Decision-Making and Trade-Off

	4.3 Proposed Design
	4.3.1 Overview
	4.3.2 Detailed Design and Visual(s)
	4.3.3 Functionality
	4.3.4 Areas of Concern and Development

	4.4 Technology Considerations
	4.5 Design Analysis

	5 Testing
	5.1 Unit Testing
	5.2 Interface Testing
	5.3 Integration Testing
	5.4 System Testing
	5.5 Regression Testing
	5.6 Acceptance Testing
	5.7 Security Testing (if applicable)
	5.8 Results

	6 Implementation
	7 Ethics and Professional Responsibility
	7.1 Areas of Professional Responsibility/Codes of Ethics
	7.2 Four Principles
	7.2 Virtues

	8 Closing Material
	8.1 Conclusion
	8.2 References
	8.3 Appendices

	9 Team
	9.1 Team Members
	9.2 Required Skill Sets for Your Project
	Protocol Implementation
	• OBD-II communication protocols (ISO 15765-4, ISO 9141-2)
	• CAN bus communication
	• Error handling and verification procedures
	Hardware Programming
	• ESP32 configuration
	• UART communication
	• Memory management
	• Protocol switching and timing
	Testing and Verification
	• Protocol verification (SOMM command)
	• Fault simulation (SF command)
	• Error detection and handling
	• Device monitoring
	Software Development
	• React Native
	• Bluetooth implementation
	• Real-time data handling
	• User interface design
	Team Skill Coverage
	Hardware Engineer
	• Protocol implementation
	• ESP32 programming
	• Error handling
	• Memory management
	Software Engineer
	• Mobile app development
	• Bluetooth integration
	• User interface design
	• Data processing
	Testing Engineer
	• Protocol verification
	• Fault simulation
	• Performance monitoring
	• Error detection
	9.3 Skill Sets covered by the Team
	Hardware Engineer Ben Muslic
	• OBD-II protocol configuration (SP command)
	• Protocol switching and timing
	• Error handling (CAN ERROR, INVALID PARAM)
	• Memory management
	Software Engineer Jonathan Duron
	• React Native mobile development
	• Bluetooth communication
	• User interface design
	• Real-time data processing
	QA Engineer Mohammed
	• Protocol monitoring (SOMM command)
	• Fault simulation (SF command)
	• Error detection and logging
	• Performance testing
	Team Lead Will Griner
	• ECU configuration (EA, EP commands)
	• System architecture
	• Protocol validation
	• Documentation
	9.4 Project Management Style Adopted by the team
	Typically, Waterfall or Agile for project management.
	9.5 Initial Project Management Roles
	9.6 Team Contract

